http://my.math.snu.ac.kr/board/files/attach/images/701/ff97c54e6e21a4ae39315f9a12b27314.png
  1. 2023-2 Number Theory (윤종흔)

    CategoryBK21 FOUR Rookies Pitch Dept.수학연구소 Lecturer윤종흔
    Read More
  2. <정년퇴임 기념강연> 작용소대수와 양자정보이론

    작용수대수에서 순서구조가 중요한 역할을 한다. C*-대수의 시작이라 할 수 있는 Gelfand-Naimark-Segal 표현정리는 양선형범함수로부터 *-준동형을 만들어내는데, 그 표현정리 이후 여러 가지 종류의 양사상에 대한 연구가 이루어졌다. 최근 활발하게 연구되...
    CategoryMath Colloquia Dept.서울대학교 Lecturer계승혁
    Read More
  3. Entropy of symplectic automorphisms

    ※ 강연 뒷부분이 녹화되지 않았습니다. A symplectic manifold is a space with a global structure on which Hamiltonian equations are defined. A classical result by Darboux says that every symplectic manifold locally looks standard, so it has be...
    CategoryMath Colloquia Dept.서강대학교 Lecturer김준태
    Read More
  4. Equations defining algebraic curves and their tangent and secant varieties

    It is a fundamental problem in algebraic geometry to study equations defining algebraic curves. In 1984, Mark Green formulated a famous conjecture on equations defining canonical curves and their syzygies. In early 2000's, Claire Voisin...
    CategoryMath Colloquia Dept.KAIST Lecturer박진형
    Read More
  5. 2023-1 Number Theory (김민규)

    CategoryBK21 FOUR Rookies Pitch Dept.성균관대학교 Lecturer김민규
    Read More
  6. 2023-1 Number Theory (김대준)

    CategoryBK21 FOUR Rookies Pitch Dept.KIAS Lecturer김대준
    Read More
  7. 2023-1 Symplectic Topology (노경민)

    CategoryBK21 FOUR Rookies Pitch Dept.서울대학교 Lecturer노경민
    Read More
  8. 2023-1 Symplectic Topology (이상진)

    CategoryBK21 FOUR Rookies Pitch Dept.IBS-CGP Lecturer이상진
    Read More
  9. Descent in derived algebraic geometry

    Among many different ways to introduce derived algebraic geometry is an interplay between ordinary algebraic geometry and homotopy theory. The infinity-category theory, as a manifestation of homotopy theory, supplies better descent results ...
    CategoryMath Colloquia Dept.서강대학교 Lecturer조창연
    Read More
  10. 2023-1 Algebraic Combinatorics (오재성)

    CategoryBK21 FOUR Rookies Pitch Dept.KIAS Lecturer오재성
    Read More
  11. 2023-1 Algebraic Combinatorics (김동현)

    CategoryBK21 FOUR Rookies Pitch Dept.BK21 Lecturer김동현
    Read More
  12. 2023-1 Dynamics and Number Theory (이슬비)

    CategoryBK21 FOUR Rookies Pitch Dept.IBS-CGP Lecturer이슬비
    Read More
  13. 2023-1 Geometric Toplology (정홍택)

    CategoryBK21 FOUR Rookies Pitch Dept.BK21 Lecturer정홍택
    Read More
  14. Toward bridging a connection between machine learning and applied mathematics

    This lecture explores the topics and areas that have guided my research in computational mathematics and deep learning in recent years. Numerical methods in computational science are essential for comprehending real-world phenomena, and dee...
    CategoryMath Colloquia Dept.성균관대학교 Lecturer홍영준
    Read More
  15. Vlasov-Maxwell equations and the Dynamics of Plasmas

    In this colloquium talk, we study the Vlasov-Maxwell equations, a collisionless model in the field of kinetic theory. The model is a fundamental model for the dynamics of plasmas and was introduced in 1938 by Vlasov. Due to the hyperbolic n...
    CategoryMath Colloquia Dept.포항공과대학교 Lecturer장진우
    Read More
  16. 2023-1 Stochastic PDE(이재윤)

    CategoryBK21 FOUR Rookies Pitch Dept.KIAS Lecturer이재윤
    Read More
  17. 2023-1 Probabilistic Potential Theroy (강재훈)

    CategoryBK21 FOUR Rookies Pitch Dept.BK21 Lecturer강재훈
    Read More
  18. Study stochastic biochemical systems via their underlying network structures

    When a biological system is modeled using a mathematical process, the following step is normally to estimate the system parameters. Despite the numerous computational and statistical techniques, estimating parameters for complex systems can...
    CategoryMath Colloquia Dept.포항공과대학교 Lecturer김진수
    Read More
  19. <학부생을 위한 ɛ 강연> 복잡한 생명현상을 위한 21세기 현미경, 수학!

    지난 50년간 진행된 분자생물학의 혁명으로 인해 생명 시스템이 수많은 분자들의 상호작용으로 구성되어 있음을 알게 되었습니다. 이러한 복잡한 시스템을 이해하기 위해서는 현미경과 같이 생명현상을 관찰하는 도구와 함께 수학은 생명과학 분야에서 필수적...
    CategoryMath Colloquia Dept.카이스트 Lecturer김재경
    Read More
  20. Birational Geometry of varieties with effective anti-canonical divisors

    Fano varieties are fundamental objects in algebraic geometry. These can be considered as the unique output of the -K -minimal model program on the varieties with effective anticanonical divisors. Thus the initial models should encode the in...
    CategoryMath Colloquia Dept.연세대학교 Lecturer최성락
    Read More
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Next
/ 16