Ill-posedness for incompressible Euler equations at critical regularit
We obtain a quantitative and robust proof that incompressible fluid models are strongly ill-posed in critical Sobolev spaces, in the sense that norm inflation and even nonexistence occur for critical initial data. We then show how to use th...
For a given compact Lie group G, classifying all manifolds equipped with G-actions is one of the most fundamental and important problems in differential geometry. In this talk, We will discuss the problem in the symplectic category and expl...
The 21st century is the age of life science. Two issues in the life sciences are that humans live long, healthy lives and maintain a steady state of the earth's ecosystems despite disturbances. In this talk, we will look at how mathematics i...
Quantitative residual non-vanishing of special values of various L-functions
Non-vanishing modulo a prime of special values of various $L$-functions are of great importance in studying structures of relevant arithmetic objects such as class groups of number fields and Selmer groups of elliptic curves. While there hav...
Classification of simple amenable operator algebras
The field of operator algebras deals with suitable closed subalgebras of the algebra of bounded linear operators on a Hilbert space. There are two types of operator algebras: C*-algebras and von Neumann algebras. In the 1970s A. Connes obtai...
Quantum Dynamics in the Mean-Field and Semiclassical Regime
The talk will review a new approach to the limits of the quantum N-body dynamics leading to the Hartree equation (in the large N limit) and to the Liouville equation (in the small Planck constant limit). This new strategy for studying both l...